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The Discrete Evolution Model of Bak and Sneppen is
Conjugate to the Classical Contact Process
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Two fundamental models of critical phenomena are connected. We show that
the discrete Bak–Sneppen evolution model is conjugate to the classical contact
process. This holds in discrete and continuous time, on all graphs and for ran-
dom as well as for deterministic choice of neighbors. Thus the extensive theory
for the contact process applies to the discrete Bak–Sneppen model, too.

KEY WORDS: Contact process; cellular automata; thinning; self-organized crit-
icality; evolution model.

The contact process, CP, was worked out by Harris(7) in 1972. It models
the spatial-temporal development of an infectious disease, a rumor or a
new trend of fashion. Individuals are represented by the vertices of a
graph, and edges connect “neighbors” which have contact with each other.
In the standard one-dimensional case, vertices are the integers and edges
lead from n to n − 1 and n + 1, for all n. Each individual can be in
one of two states 0 and 1, healthy and sick. Sick individuals will recover
with rate 1, and will infect a randomly chosen neighbor with rate λ> 0.
An extensive mathematical theory, collected in the monographs of Ligg-
ett,(9,10) allows to study this process in continuous time for infinite con-
figurations of 1s. Among others, critical parameters have been estimated,
it was shown that “the critical contact process dies out” and that on the
homogeneous tree CP admits two phase transitions.(14)

On a finite graph, the process can be studied in discrete time as fol-
lows. At each step, choose randomly one of the individuals, with equal
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probability. If it is healthy, nothing happens. If it is sick, we choose one
of its neighbors, also with equal probability. Now with probability q =
1/(1 + λ) let the chosen individual recover, that is 1 �→ 0, and with prob-
ability p = λ/(1 + λ) let the individual infect the chosen neighbor, pro-
vided this neighbor is healthy: 10 �→ 11. For small λ, the disease will die
out, so that only zeros remain. For large λ the disease will spread, so that
when time tends to infinity, for each individual the probability to be sick
is larger than some positive constant ε. In-between there is the critical
parameter λc.

A model of evolution, BS, was introduced by Bak and Sneppen in
1993.(2) It represents species as vertices of a graph. Edges connect “neigh-
boring species” which depend on each other, like prey and predator.
Again, the standard case is that species are numbered by integers, and n is
a neighbor of n−1 and n+1. The state of each species n is a number xn
between 0 and 1, the so-called fitness. At each discrete time step, the spe-
cies n∗ with minimum fitness is chosen. It will die out, and is immediately
replaced by another species with random fitness. Thus xn∗ is replaced by
a random number equidistributed in [0,1]. At the same time, the neigh-
boring species will also become extinct, even though they may have high
fitness, because of their connection with the eliminated species. They are
replaced by new species, too. Thus in the standard setting, xn∗−1, xn∗ and
xn∗+1 are replaced by equidistributed random numbers in [0,1]. Moreover,
all random numbers should be independent.

BS is a model of self-organized criticality which means that it will
automatically approach its critical state. Computer simulations show that
for a large number of species and sufficiently long time, the fitness values
of most species become equidistributed above a certain critical threshhold
xc. Very few values are below xc and will be changed by the process. On
the integers, the critical value is very near, but not equal to 2/3.(6) How-
ever, in spite of hundreds of papers on BS, even such basic statements have
not yet been proved with mathematical rigor, cf. ref. 13.

The Discrete Bak–Sneppen model. Since BS is hard to analyze, a sim-
plified model DBS with only two states 0 and 1 was suggested by Barbay
and Kenyon.(4) These states represent fitness in [0, p[ and in [p,1], respec-
tively, where p is taken as parameter. When we compare with CP, species
with small fitness correspond to sick individuals – they are “infectious”
and trigger the process. So let us turn the scale, taking state 1 for fitness
in [0, p[ and state 0 for fitness in [p,1]. This notation is chosen so that
the all-zero configuration is not changed by the process, which is a nat-
ural property for such models.

Assume we have a finite graph, and take an infection parameter p in
[0,1] as in CP. In each time step, we choose randomly one species. If it is
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in state 0, nothing happens. If it is in state 1, then the states of this spe-
cies and all its neighbors are renewed. Each of these vertices is indepen-
dently assigned value 1 with probability p, and value 0 with probability
1−p. This process acts similarly as BS, but instead of organizing its crit-
ical state, the 1’s will die out for small p, and they should spread around
for large p, as in CP. In-between there should be a critical value pc.

Meester and Znamenski(12) verified this for the process on a finite circle,
i.e.N cyclically arranged sites. When all states were 0, they continued the pro-
cess with a random site of state 0 and its neighbors. They proved that if p is
close enough to 1, then the long-term average fitness of every site is greater ε
where ε>0 depends on p, but not on the site and not onN.

Main result of the paper. The aim of this note is to show, with
a rather simple argument, that the discrete Bak–Sneppen model behaves
exactly like the contact process, on an arbitrary graph. Thus all results
which have been shown for CP will immediately extend to DBS, and it is
not necessary to develop special theory for the new model.

However, it is not that easy. Since CP and BS come from different sci-
entific communities, their settings are different. We can only compare CP
with DBS when both have the same setting. We shall consider four ver-
sions, and each time we shall show that CP is equivalent to DBS. In the
difficult case of interacting particle systems we can apply general criteria
developed by Sudbury and Lloyd(15) and Bandt.(3) For the cellular auto-
mata version, we give definitions of CP and DBS which seem to be new,
and a very simple argument. A message of this paper is that the equiva-
lence of processes, like CP and DBS, is stronger than the technical details
of different settings (discrete or continuous time, local or parallel action,
random neighbor or all neighbors).

What does “equivalence” mean? Let us fix a finite graph G= (V ,E)
with n = |V | vertices. We have 2n possible 0-1-configurations which we
denote by letters η,ψ. A configuration η is often identified with the cor-
responding set of vertices with state 1, so η is just a subset of V .(9,10) The
random processes which we consider in discrete time are Markov chains,
given by a transition matrix (pηψ) with 2n rows and columns. Let C=Cp
and D=Dp denote the transition matrices for CP and DBS, respectively.
We shall prove that these matrices are conjugate, where the conjugacy is
given by another transition matrix T =Tp called thinning operator. A sim-
ilar construction can be done when the graph is infinite and the matrices
are replaced by operators. Here is our main result.

Theorem. Let C and D be the Markov operators which correspond
to CP and DBS with the same parameter p, respectively. Then

D ·T =T ·C.
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This is a general statement on conjugacy of certain matrices. A sim-
ilar connection is known between coalescing and annihilating random
walk.(1) The theorem holds on arbitrary graphs, and will be proved for
four different versions of the processes. Let us first define the thinning
operator. T =Tp acts on each vertex independently. If the vertex is in state
0, nothing happens. If the vertex is in state 1, it will remain so with prob-
ability p, and will go to state 0 with probability q = 1 −p. Thus if η is
a subset of V with n sites, then Tp(η) is a random subset of η. For each
ψ⊆η with k points we have Tp(η)=ψ with probability pkqn−k. Thus the
number of elements of Tp(η) has binomial distribution with parameters
n,p.

Thinnings and their connection with duality of processes were stud-
ied in a more general setting by Lloyd and Sudbury(15) and Bandt.(3) The
theorem says that CP acts on any initial configuration in the same way
as DBS acts on the thinned configuration. This is a very tight connection
between the two processes. As a corollary we show that CP and DBS will
either both die out for a parameter p, or will both survive with positive
probability. Thus the critical parameter pc will be the same for both pro-
cesses, for an arbitrary graph.

Actually, this was the starting point of the present paper. With Tyll
Krüger from Bielefeld we studied CP and DBS already in 1999 by com-
puter simulation and found that the critical parameters are the same.
I would like to thank Tyll for introducing me to the subject of self-
organized criticality.

Cellular automata. First we shall study a cellular automata version of
the processes which apparently has never been in the focus of probabilists
working with CP and physicists working with BS. We take a locally finite
graph G (possibly with infinitely many vertices), and in each discrete time
step we perform parallel processing of all 1’s and all their neighbors. When
DBS is considered as a discretization of BS, this version is appealing since
the “minimum site” is certainly processed at each step. Moreover, it is very
clear how to define DBS as a cellular automaton: each site with state 1
and each neighbor of such a site should be renewed. Each of these verti-
ces is independently assigned 1 with probability p and 0 with probability
q=1−p. More formally, for a configuration ψ of 1’s consider the neigh-
borhood

U(ψ)=ψ ∪{u | there is v∈ψ with (v, u)∈E}.

The new configuration D(ψ) is the p-thinning of U(ψ), that is
D(ψ)=T (U(ψ)).
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Let us define the operator D more formally. If X = {0,1}V denotes
the space of all configurations ψ, consider the linear space R

X of all lin-
ear combinations µ=∑

ψ∈X cψ ·ψ with real coefficients cψ . Our Markov
operators will be linear operators on this vector space. They act in partic-
ular on the simplex S of all probability distributions on X. The set S⊂R

X

contains those linear combinations µ for which cψ � 0 and
∑
cψ = 1.

When we identify η with 1 · η ∈ S, we consider X as a subset of the
simplex S.

The mappings T and U are defined on X, with values in S. They
extend to form linear operators on R

X in the natural way: T (
∑
cψψ)=∑

cψT (ψ). Clearly, T and U become Markov operators, i.e. they map S

into S. According to the above discussion, the Markov operator D of DBS
is given by

D=T ·U. (1)

To define CP as a cellular automaton, we note that a site with k

occupied neighbors is subject to k attacks of infection. If we postulate
that “infection prevents recovery”, then we have in the case of k occupied
neighbors

1→0 for an occupied site with probability qk+1,

0→1 for an unoccupied site with probability 1−qk.

This cellular automata rule of CP is realized for a configuration η

as follows. For each site v with η(v)=1 independently we take a random
number x(v) where x(v)= 1 (the site remains infectious) with probability
p, and x(v)=0 (the site tends to recover) with probability q. For an arbi-
trary site w, let C(η)(w)=1 if either η(w)=1=x(w), or if there is an edge
(v,w)∈E with η(v)=1=x(v). If there is no such edge, and x(w)=0, let
C(η)(w)=0. All other sites remain unchanged.

Let us define the Markov operator C of CP formally. The set ψ of all
v∈η with x(v)=1 is a p-thinning of η, that is ψ=T (η). The set C(η) is
the neighborhood of ψ :

C(η)=U(ψ)=U(T (η)) or short: C=U ·T . (2)

Now our theorem follows directly from (1) and (2):

D ·T =T ·U ·T =T ·C. (3)
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Using standard methods,(9) the proof can be extended to countable
locally finite graphs, like Z

d , the standard graph for cellular automata.

Remark. DT = T C implies DnT = T Cn by induction. Let us take
an arbitrary initial configuration η, and consider the thinning of the ran-
dom configuration Cn(η) obtained by running the contact process n time
steps. We proved that this coincides with the random configuration Dn(ξ),
where ξ =T (η) is the thinning of η. Here η and ξ denote random config-
urations, more precisely, distributions of configurations. Relations between
Markov operators imply relations between distributions.

If we realize both processes CP and DBS on a common probability
space �, using one random number for each site and each time step, the
processes DT and T C will not result in identical configurations ψ(ω) for
almost all ω ∈�. In fact, ω and the random element ω for the thinning
operator are chosen independently. In (3), D ·T equals TωUTω while T ·C
is TωUTω.

Example. Consider a graph with two vertices u, v connected by an
edge, and the initial configuration η(u)=0, η(v)=1. The thinning operator
is realized by two random numbers t (u), t (v) which are 1 (keep the point)
with probability p and 0 (cancel the point) with probability q = 1 − p.

Both DBS and CP are realized by two other random numbers x(u), x(v)
with the same distribution. In this case 1 means low fitness or infection,
and 0 means high fitness or recovery. All four random numbers are chosen
independently.

Now the configurations ξ =T (η),ψ =DT (η) and φ=T C(η) are ran-
dom configurations since they depend on random numbers. It is easy to see
that ψ(v)=φ(v) since this will be 1 if and only if t (v)=x(v)=1. However,
ψ(u)= 1 means t (v)= x(u)= 1 and φ(u)= 1 means t (u)= x(v)= 1. Thus
the events ψ(u)= 1 and φ(u)= 1 have the same probability p2 but they
are different and even independent since they depend on different random
numbers. This example holds with slight modification for all other versions
below.

Discrete time, all neighbors. Now we consider the original version of
DBS(4,12) on a finite directed graph G= (V ,E). In each step, one vertex v
of V is chosen, where each vertex u has probability pu, and

∑
u∈V pu=1.

In the uniform case, pu = 1/n. We then consider the neighborhood U(v)

consisting of v and all w for which there is an edge (v,w). If η(v)=1 then
for DBS, each point of U(v) is assigned independently the state 1 with
probability p and state 0 with probability q. For CP we assign 1 to all
elements of U(v) with probability p, and we assign 0 to v with probabil-
ity q. The states of the other vertices remain unchanged. If η(v)= 0 then
both processes will change nothing.
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The Markov operators for this version will have the form D =∑
v∈V pvDv and C = ∑

v∈V pvCv where Cv,Dv are Markov operators
which change only the state of the vertices in U(v). In order to prove
our theorem, it is enough to show Dv · T (η) = T · Cv(η) for every v ∈
V and every 0-1-configuration η on V. So let us fix v ∈ V and assume
η(v)= 1 because otherwise the equation needs no proof. Moreover, since
both operators DvT and T Cv result in a p-thinning of η on V \U(v), we
consider only the action on U(v).

Consider DvT . With probability p, the first operator T will leave
η(v)= 1 unchanged, and Dv will then yield a p-thinning of the all-one-
configuration on U(v). With probability q, the operator T will cancel v
from η, and Dv will not change anything. In this case, DvT (η)(v)=0, and
DvT (η) is a p-thinning of η on V \ {v}.

Now consider T Cv. With probability q, the operator Cv will just
provide recovery to the point v, so that T Cv(η)(v)= 0 and T Cv(η) is a
p-thinning of η on V \ {v}. With probability p, the operator Cv will bring
infection from v to U(v), and T Cv results in a p-thinning of the all-one-
configuration on U(v). The theorem is proved for the second version.

Discrete time, one random neighbor. Now we consider both processes
in discrete time and with the original setting of CP where infection
involves only one random neighbor. For the Bak–Sneppen model with
continuous fitness, one-neighbor versions were studied for the mean-field
case(5) and on the line.(8,11) This model can be formulated with the ran-
dom choice of an edge e= (v,w) from the finite directed graph, where v
is the infectious site and w the neighbor to be infected. Here e is chosen
with probability pe, and

∑
e∈E pe=1.

In this setting, C=∑
peCe,D=∑

peDe where Ce,De change only the
states at v and w. To show the theorem, we verify DeT (η)= T Ce(η) for
each edge e and each configuration η. The assertion holds for η(v)= 0
since both Ce and De will have no effect. For η(v)=1 the proof proceeds
as above.

There is a generalization of both the all-neighbor and one-neighbor
setting. One can take families of neighborhoods N(v) for each site v. In
a time step, one point v and a corresponding neighborhood N is chosen
with probability pv,N . CP and DBS can be defined similarly as above, and
the theorem can be proved, too.

Continuous time, one random neighbor. This is the original mathemat-
ical version of CP as an interacting particle system, see refs. 9, 10. Since
it works for infinite locally finite graphs as Z

d , this seems the most rea-
sonable setting from the mathematical point of view, but it requires semi-
groups St , t > 0 of appropriate operators on Banach spaces. Fortunately,
our theorem in this case is a special case of theorem 1.4 in ref. 3. There
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we studied processes which change the states 0,1 on any two neighboring
vertices of an undirected graph by the rules 11→a 00, 11→c 01,10→d 00,
10→e 01, and 10→g 11. Here a, . . . , g denote the rates for the correspond-
ing change. For CP we have a= e= 0, c= d = q and g=p. For DBS we
have a′ = d ′ = q2, c′ = 2pq and e′ =pq,g′ =p2. In both cases, the sum of
rates is 1+q. Consider x=d−2a− c−g=−p and x′ =d ′ −2a′ − c′ −g′ =
−1. Then x′ = x/p and g′ = g ·p which by theorem 1.4 of ref. 3 implies
the above theorem. This was done only for undirected graphs, but can be
extended to the directed case.

Corollary. Starting from a configuration with a single 1, the prob-
abilities that CP and DBS died out after n steps differ at most by the
factor p.

Proof. Let η(v)= 1 and η(u)= 0 for all u 	= v. Our theorem implies
DnT = T Cn for all n. Thus, using the independence of thinning and CP
resp. DBS, and p = P {T (η)= η}, we get two equations for the survival
probabilities:

P {T Cn(η) 	=0}=P {DnT (η) 	=0}=pP {Dn(η) 	=0},

P {Cn(η) 	=0}�P {T Cn(η) 	=0}�pP {Cn(η) 	=0}.

This completes the proof. For interacting particle systems, a formula
connecting the number of remaining 1’s for Ct and Dt at any time t was
given in Chapter 6 of ref. 3.

Our note indicates that duality and thinning of interacting particle
systems tend to carry over to discrete time and cellular automata versions
of the processes under study.
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